

Home

Search Collections Journals About Contact us My IOPscience

The hysteresis loop of internal friction associated with magnetic flux pinning in  $YBa_2Cu_3O_{7-x}$  superconductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1992 J. Phys.: Condens. Matter 4 4519 (http://iopscience.iop.org/0953-8984/4/18/018) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.159 The article was downloaded on 12/05/2010 at 11:54

Please note that terms and conditions apply.

# The hysteresis loop of internal friction associated with magnetic flux pinning in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> superconductors

Y T Went, T S Ket, H G Bohnt, H Soltnert and W Schillingt

 † Laboratory of Internal Friction and Defects in Solids, Institute of Solid State Physics, Academia Sinica, Hefei 230031, People's Republic of China
 ‡ Institut für Festkörperforschung der Forschungszentrum, 5170 Jülich, Federal Republic of Germany

Received 28 August 1991, in final form 2 January 1992

Abstract. The hysteresis loops of internal friction associated with the magnetic flux pinning in high- $T_c$  bulk and film YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> superconductors were investigated by the vibrating-reed technique. When a cyclic magnetic field is applied, both the internal friction  $Q_B^{-1}$  and the resonant frequency  $f_r$  exhibit a hysteresis loop. This is explained on the basis of the Bean model. It is considered that the variation in the  $Q_B^{-1}$  hysteresis loop reflects the different mobilities of the flux lines at different positions of the pinning potential well. The critical current density  $J_c$  and the bulk pinning force density  $P_V$  were estimated from the  $Q_B^{-1}$  hysteresis loop for the film specimen.

#### 1. Introduction

In 1986, the vibrating-reed technique was introduced for the study of magnetic flux pinning [1, 2]. Since then this technique has been successfully used to investigate the magnetic flux pinning for normal and high- $T_c$  superconductors [3-8]. The experimental results presented by Gregory *et al* [9] demonstrated that the vibrating-reed technique is also suitable for the study of magnetic flux pinning of superconducting films.

Previous studies were concentrated on the measurement of the variation in internal friction  $Q^{-1}$  and resonant frequency  $f_r$  with temperature T and applied magnetic field  $B_a$ . In another paper [10], we reported the amplitude effect of the internal friction and resonant frequency.

Among the techniques for measuring the magnetic flux pinning of superconductors, an important method is the measurement of the hysteresis loop of magnetization. From this loop the pinning force and the critical current density can be obtained.

In this paper, we present the experimental results of the hysteresis loop of internal friction and resonant frequency measured when a cyclic magnetic field is applied. The variation in the loop with amplitude and maximum applied magnetic field was systematically studied.

#### 2. Experimental technique

The experimental apparatus used is an electrostatically driven and modulated frequency-detected vibrating reed with a cryostat (10-300 K) and an electric magnet (0-1.5 T). The magnetic field is in the longitudinal direction of the vibrating reed.

It is controlled by an IBM PC/AT computer. The vibration of the specimen at a constant amplitude is driven by a self-exciting loop. The amplitude  $A_m$  can be varied by gain adjustment of the loop and is given by an arbitrary unit with an error of about 5%. By estimation,  $A_m = 1$  corresponds to an amplitude of about 100 nm.

The internal friction  $Q^{-1}$  and resonant frequency  $f_r$  were measured by the freedecay method. The precision of  $Q^{-1}$  is better than 1%. The precision of f, depends on the magnitude of  $Q^{-1}$  and is better than  $Q^{-1}/100$ .

The internal friction can be expressed by

$$Q^{-1} = Q_0^{-1} + Q_B^{-1}$$

where  $Q_0^{-1}$  is the internal friction of the specimen itself and is called the background internal friction, and  $Q_B^{-1}$  is produced when a magnetic field is applied and is called the internal friction of magnetic flux pinning. The variation in the squared frequency is

$$\mathrm{d} f_r^2 = (f_r^2 - f_0^2) / f_0^2$$

where  $f_0$  is the resonant frequency when  $B_n = 0$ .

A sintered  $YBa_2Cu_3O_{7-x}$  superconductor was prepared by the solid phase reaction method. The size of the specimen is 15 mm  $\times$  2.5 mm  $\times$  0.24 mm. At room temperature, the resonant frequency  $f_r \simeq 1.4$  kHz and the background internal friction  $Q_0^{-1} \simeq 3 \times 10^{-3}$ . The YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> film specimen with  $T_c = 90$  K was made by a DC sputtering method [11] on a single-crystal MgO substrate. The thickness of the film is 800 nm. The effective size of the vibrating reed for the film specimen is 6.5 mm  $\times$  3 mm  $\times$  0.23 mm. This smaller size gives a higher resonant frequency (about 10 kHz).

Before measuring the hysteresis loop of  $Q_B^{-1}$  and  $df_r^2$ , the cyclic magnetic field was applied several times so that a stable state of the flux lines was established in the specimen.

### 3. Experimental results

Figure 1 shows the magnetic hysteresis loop of the internal friction  $Q_B^{-1}$  and the resonant frequency  $df_r^2$  for the sintered specimen. It is seen that the values of  $Q_B^{-1}$  and  $df_r^2$  corresponding to descending  $B_a$  are larger than that corresponding to ascending  $B_{a}$ .

The hysteresis loop of  $Q_B^{-1}$  is complex.

- (1) At first,  $Q_B^{-1}$  increases monotonically with increasing  $B_a$ .
- (1) The first, Q<sub>B</sub> intercases interfectively with intercasing B<sub>a</sub>.
  (2) When B<sub>a</sub> begines to decrease, Q<sub>B</sub><sup>-1</sup> continues to increase to a maximum value.
  (3) Then Q<sub>B</sub><sup>-1</sup> decreases with decreasing B<sub>a</sub>.
  (4) When B<sub>a</sub> decreases to zero, Q<sub>B</sub><sup>-1</sup> becomes close to zero.

The loop of  $df_r^2$  is simple.  $df_r^2$  increases monotonically with increasing  $B_a$  and decreases when  $B_a$  decreases.

Figure 2 shows the hysteresis loops of  $Q_B^{-1}$  and  $df_r^2$  for the film specimen. Similar to the case of the sintered specimen,  $Q_B^{-1}$  and  $df_r^2$  with decreasing  $B_a$  are larger than those with increasing  $\dot{B}_a$ . The shape of the  $df_r^2$  loop is similar to that of



Figure 1. Hysteresis loops of  $Q_B^{-1}$  and  $df_r^2$  for the sintered specimen (T = 10 K;  $A_m \simeq 3$ ). The arrows show the increasing and decreasing magnetic fields.



Figure 2. Hysteresis loops of  $Q_B^{-1}$  and  $df_r^2$  for the film specimen (T = 19.8 K). The arrows show the increasing and decreasing magnetic fields.

the sintered specimen. On the contrary, the  $Q_B^{-1}$  loop of the film specimen with decreasing  $B_a$  cannot be divided into several steps. The hysteresis loops of  $Q_B^{-1}$  and  $df_r^2$  are small with hysteresis values of  $B_a$  and  $Q_B^{-1}$  of only several tens of gausses and  $10^{-6}$ , respectively.

It should be pointed out that  $Q_B^{-1}$  is strongly dependent on the amplitude  $A_m$ , and this will be reported in another paper [10].

Figure 3 shows a set of hysteresis loops of  $Q_B^{-1}$  with different amplitudes for the sintered specimen. At small  $A_m$ , the  $Q_B^{-1}$  has a large hysteresis area and exhibits

several steps as described above. When  $A_m$  increases gradually, the level of the  $Q_B^{-1}$  loop drops, and the area of the loop decreases; the second step of the loop becomes small and finally disappears. When  $A_m$  is very large, the loop becomes very narrow. Thus the  $Q_B^{-1}$  loop of the sintered specimen is strongly dependent on  $A_m$ .

Figure 4 shows a set of hysteresis loops of  $df_r^2$  with the same conditions as figure 3. When  $A_m$  varies from 1 to 16, there is no change in the shape and the level of the  $df_r^2$  loop. Therefore, the  $df_r^2$  loop is independent of  $A_m$ .



Figure 3. Amplitude effect of the  $Q_B^{-1}$  loop for the sintered specimen (T = 13.4 K;  $B_{max} = 7.25$  kG): O,  $A_m = 1$ ;  $\Box$ ,  $A_m = 2.5$ ;  $\Delta$ ,  $A_m = 16$ .  $A_m$  is in arbitrary units.



Figure 4. Amplitude effect of the  $df_r^2$  loop for the sintered specimen. The conditions are the same as in figure 3. The arrows show the increasing and decreasing magnetic fields.

A change in  $A_m$  may change the dynamic distribution of the magnetic flux density in the superconductor. The amplitude effect of the  $Q_B^{-1}$  loop described above may reflect the fact that  $Q_B^{-1}$  is dependent not only on the applied magnetic field but also on the distribution of the magnetic flux density and the moving state of the magnetic flux lines in the pinning barrier. Then the hysteresis value of the  $Q_B^{-1}$  loop may reflect the gradient of the magnetic flux density. There is a larger gradient of the magnetic flux density when  $A_m$  is small.

Figure 5 shows a set of curves of  $Q_B^{-1}$  and  $df_r^2$  for a sintered specimen for several maximum applied magnetic fields  $B_{\max}$ . It is seen that the loops for smaller  $B_{\max}$  are enclosed in the loops for larger  $B_{\max}$ . When  $B_{\max}$  is small, the  $Q_B^{-1}$  loop

exhibits steps (1), (2) and (4). With increasing  $B_{\text{max}}$ , step (2) becomes larger and finally saturates, and step (3) appears gradually.

Let us define the variation in step (2) of the  $Q_B^{-1}$  loop as  $dQ_2^{-1}$ . Figure 6 shows the variation in  $dQ_2^{-1}$  with  $B_{\max}$ . The variation in  $dQ_2^{-1}$  from zero to a saturated value reflects the fact that the flux lines gradually penetrate into the superconducting specimen.



Figure 5. Hysteresis loops of  $Q_B^{-1}$  and  $df_r^2$  with several  $B_{\max}$  for the sintered specimen  $(T = 33 \text{ K}; A_m \simeq 1)$ . The arrows show the increasing and decreasing magnetic fields.



Figure 6. Plot of  $dQ_2^{-1}$  versus  $B_{max}$  for the sintered specimen (T = 13.4 K;  $A_m \simeq 1$ ).

A set of  $Q_B^{-1}$  hysteresis loops for the film specimen was measured within the temperature range from 10 to 70 K. Assume dB to be the hysteresis value of the

applied magnetic field corresponding to the same  $Q_B^{-1}$ . Figure 7 shows the relation between dB and the temperature T. The decrease in dB with increasing T reflects the fact that the pinning force decreases with increasing temperature.

## 4. Discussion

The Bean model has been widely applied to explain the results of electric and magnetic measurement of magnetic flux pinning. The distribution of the magnetic flux density inside the specimen has been generally considered to be linear as shown in figure 8. In figure 8, it can be seen that the areas under the line BA, indicating at B the distribution of the magnetic flux density on increasing magnetic field, and the line DC, indicating at D the distribution on decreasing magnetic field, are the same. Since this area is proportional to  $Q_B^{-1}$ , this means the same  $Q_B^{-1}$  value can be obtained by different increasing and decreasing applied magnetic fields corresponding to B and D which has the difference dB as indicated in figure 8. Therefore, the Bean model of linear distribution of magnetic flux density can aptly explain the  $Q_B^{-1}$  loop without step (2) as shown in figure 2(a) and figure 3. However, the situation is rather complex in the cases when step (2) occurs. It can be shown that in such cases the gradient of the distribution of magnetic flux density varies from the surface to the centre of the specimen. The displacement of the magnetic flux lines or the mobility of the flux lines during the vibration of the specimen is different in regions with different gradients of the distribution of magnetic flux density. In regions with smaller gradients, the flux lines lie near the centre of the pinning well. Then the mobility of flux lines is large, giving rise to a large energy dissipation. When the applied magnetic field begins to drop from its maximum value, regions with very small gradients will be created in the demarcation between the decreasing flux density and the flux density at the maximum magnetic field. The mobility of the flux lines is very large in such regions with very small gradients so that the energy dissipation is large. Consequently  $Q_B^{-1}$  increases when the applied magnetic field begins to drop from its maximum value and leads to the occurrence of step (2) in the  $Q_B^{-1}$  loop.



Figure 7. Plot of dB versus T determined from the  $Q_B^{-1}$  loops for the film specimen.

When the amplitude is large, the flux lines begin to depin in the course of increasing applied magnetic field so that the gradient of the distribution of flux density is correspondingly small. Consequently, when the applied magnetic field begins to



Figure 8. The Bean model with a linear distribution of magnetic flux density: —, distribution of magnetic flux density with increasing applied magnetic field; --, distribution of magnetic flux density with decreasing applied magnetic field. d is the thickness of the film.

drop from its maximum value, the change in the gradient is small so that  $Q_B^{-1}$  will not increase at decreasing magnetic field and step (2) will not appear in the  $Q_B^{-1}$  loop.

Now let us calculate the critical current  $J_c$  and the volume pinning force density  $P_V$  from the hysteresis loop of  $Q_B^{-1}$ . The relation between  $J_c$  and the gradient  $\partial B/\partial X$  of the magnetic flux density is

$$J_{c} = (1/\mu_{0})(\partial B/\partial X)$$

where  $\mu_0$  is the vacuum permeability. Experimental data for the film specimen will be used in the calculation in order to avoid the difficulty introduced by the variation in  $\partial B/\partial X$  at various locations in thicker specimens. The hysteresis value dB of the  $Q_B^{-1}$  loop is referred to the difference between the  $B_a$  values at increasing and decreasing magnetic fields giving the same  $Q_B^{-1}$ . Since dB varies with  $B_a$ , the value of dB used in the calculation is that corresponding to  $(dQ^{-1})_{max}$  which is the difference between the  $Q_B^{-1}$  values at decreasing and increasing magnetic fields. The linear extent corresponding to dB is one half of the specimen thickness, i.e. d/2(figure 8). Thus we have

$$\partial B/\partial X \simeq \mathrm{d} B/(d/2)$$

anđ

$$J_c \simeq (1/\mu_0) [dB/(d/2)].$$

The volume pinning force is given by

$$P_V = J_c B.$$

For estimation, B can be substituted by  $B_{a}$ .

From figure 7 which shows the temperature dependence of dB in the temperature range from 10 to 70 K, the  $J_c$  value estimated for the film specimen 800 nm thick varies from  $8 \times 10^9$  to  $4 \times 10^9$  A m<sup>-2</sup> in this temperature range.

The assumption of a linear distribution of magnetic flux density is invalid for bulk specimens. Furthermore, the effect of particle size and the weak linking between particles on the  $Q_B^{-1}$  loop is not clear. Also the  $Q_B^{-1}$  loop then shows a strong amplitude effect. Further research is necessary for the clarification of all these problems.

#### Acknowledgment

This research has been partially subsidized by the National Natural Science Foundation of China (No 5880017).

#### References

- [1] Brandt E H, Esquinazi P and Neckel H 1986 J. Low Temp. Phys. 63 187
- [2] Esquinazi P, Neckel H, Weiss G and Brandt E H 1986 J. Low Temp. Phys. 64 1
- [3] Brandt E H, Esquinazi P, Neckel H and Weiss G 1986 Phys. Rev. Lett. 56 89
- [4] Gupta A, Esquinazi P and Braun H F 1989 Phys. Rev. B 39 12271
- [5] Esquinazi P and Duran C 1988 Physica C 153 1499
- [6] Wen Y T, Xie C Y, Yuan L X, Kê T S, Qian Y T and Chen Z Y 1990 Proc. 9th Int. Conf. on Internal Friction and Ultrasonic Attenuation in Solids ed T S Kê (Beijing: International Academic Publishers) (Oxford: Pergamon) p 513
- [7] Wen Y T, Xie C Y, Yuan L X, Kê T S, Qian Y T and Chen Z Y 1990 J. Phys.: Condens. Matter 2 661
- [8] Gammel P L, Schneemayer L F, Waszczak J V and Bishop D J 1988 Phys. Rev. Lett. 61 1666
- [9] Gregory S, Rogers C T, Venkatesan T, Wu X D, Inam A and Dutta B 1989 Phys. Rev. Lett. 62 1548
- [10] Wen Y T, Kê T S, Bohn H G, Soltner H and Schilling W 1992 Physica C at press
- [11] Schubert J, Prieto P and Poppe U 1989 Proc. 7th Int. Conf. on Ion- and Plasma-Assisted Techniques (Geneva)